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Abstract. At an extreme environment, such as high-temperature and high-pressure, harmonic theory has
obvious limitations, where the anharmonic effects are influential in determining bulk properties of the
materials. In this regard, necessity for incorporating anharmonicity through vibrational contribution and
thermally excited electrons to the total free energy at finite temperatures is illustrated taking an example
of divalent fcc-Ca. In this regard, we have employed a coupling scheme of combining recently proposed
mean-field potential (MFP) with the local pseudopotential to obtain vibrational contribution to the total
free energy. To access the applicability of the present coupling scheme, we have calculated temperature
variation of several thermodynamical properties. Static EOS, shock Hugoniot and temperature along prin-
cipal Hugoniot are also estimated. Results are satisfactorily compared with the other theoretical and
experimental data and the use of local pseudopotential in conjunction with the MFP approach is justified.

PACS. 65.40.Ba Heat capacity – 65.40.De Thermal expansion; thermomechanical effects – 64.30.+t Equa-
tions of state of specific substances

1 Introduction

The properties study of materials at high pressures and
high temperatures is always inevitable to extend our
present understanding regarding the behaviour of the ma-
terials to these external influences as well as for the future
technological developments. At an extreme environment,
such as high-temperature and high-pressure, harmonic
theory has obvious limitations, where the anharmonic ef-
fects are decisive in determining bulk properties. To ac-
count for anharmonic effects, which is essential otherwise
to study the phenomena associated to structural phase
transition, melting of materials and thermophysical prop-
erties at other than ambient conditions, lots of efforts have
been made in past. Unfortunately, on one hand, experi-
mentally, where anharmonic effects can be estimated by
studying damping of phonons and frequency shifts but
large uncertainties in these results are observed (for ex-
ample, see Refs. [1–3]). On the other hand, theoretical
investigations require proper account of lattice vibration
and contribution from thermally excited electrons. For in-
stance, the later contribution can be accounted for by us-
ing Mermin functional [4] within the density-functional
theory (DFT), while the treatment of ion-motional to the
Helmholtz free energy pause difficulty. Current computa-
tional developments to incorporate ionic vibrations to the

a e-mail: bhattnisarg@hotmail.com
b e-mail: janiar@rediffmail.com

total free energy are two fold: (i) complete ab initio or first
principles methods [5–7] and (ii) relatively simple analyt-
ical approaches [8–13]. Full ab initio calculations, though
highly reliable, at high temperatures and high pressures
being difficult, they are usually implemented using cer-
tain well-defined approximations. In the second scheme, as
for the temperature dependence properties study, mean-
field approximation remains a subject of preference for
the theoretical physicist. The central issue of mean-field
theory is to find the simpler way to model mean-field po-
tential (MFP) seen by the vibrating lattice ions. In this
regard; (i) the free volume theory [10] calculates the MFP
from average of the empirically derived pair-wise poten-
tial, (ii) particle in a cell (PIC) model or simply the cell
model [11] employs tight-binding (TB) total energy cal-
culations to estimate MFP, where TB potential param-
eters were fitted to the first principles results, and (iii)
recently proposed MFP approach due to Wang and his
co-workers [12]. These authors have used first principles
FP-LAPW method within GGA to evaluate 0 K cohesive
energy, which in turn was used to obtain vibrational free
energy.

The alkaline-earth metals, group-II in the periodic
table, have large compressibility and phase diagrams
strongly influenced by a nearly empty d-band lying in
close proximity to the sp-valance band. The d-band oc-
cupation increases with increasing atomic number and
with increasing pressure. In effect, pressure converts the
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alkaline-earth metals from an alkali metal-like to an early
transition metal-like character. Surprisingly, finite temper-
atures and pressures thermodynamic properties for these
metals are scarce in the literature, until recently, Katsnel-
son et al. [14,15] have estimated the effects of anharmonic-
ity in the lattice dynamics and thermodynamics of Sr and
Ca. Recently, we [16] have combined MFP approach to
local pseudopotential due to Fiolhais et al. [17] to esti-
mate equations of states (both static as well as shock
Hugoniot) and temperature variation of thermodynamic
Grüneisen parameter (γth) of elemental Sr. For the com-
plete assessment of the MFP in conjunction with the local
pseudopotential to the thermodynamics of alkaline earth
metals, in the present communication, we have calculated
several thermodynamic properties of elemental fcc-Ca at
finite temperatures. Our first objective is to see to what
extent anharmonic effects is accounted for in the present
calculations through monitoring bulk moduli (isothermal
and adiabatic), specific heats, Helmholtz free energy, ther-
modynamic Grüneisen parameter etc. at elevated temper-
atures. Secondly, to calculate static and dynamic equation
of state (EOS), and temperature along principal Hugoniot,
which manifests themselves the influence of the empty
d-band in close proximity to the Fermi surface to these
properties.

2 Calculation

The Helmholtz free energy at an extreme environment,
neglecting electron-phonon interaction, can be written as,

F (Ω, T ) = EC (Ω) + Fion (Ω, T ) + Feg (Ω, T ) . (1)

Static energy EC(Ω) in equation (1) has been calculated in
second-order pseudopotential formalism with the “evanes-
cent” local pseudopotential due to Fiolhais et al. [17].
These authors have used two possible ways of determining
potential parameters, namely (α and R), so-called ‘univer-
sal’ and ‘individual’ ones. Universal set of parameters were
fixed by empirical RS and Z only, while the individual
ones were determined by fitting actual value of the va-
lence interstitial electron number Nint apart from RS and
Z. Here, R is the core decay length, α is a positive pa-
rameter and RS is the radius of the sphere containing one
electron. Since this local pseudopotential was constructed
directly in and for solid state, equilibrium bulk proper-
ties can be calculated more accurately with the individual
set of parameters. Due to this observation we, in this pa-
per, have used individual set of parameters. Following zero
pressure condition, we have determined RS and hence 0 K
volume. EC(Ω) is then used to evaluate vibrational free
energy Fion(Ω, T ), through mean-field potential (MFP)
approach due to Wang and Li [12]. As noted by Katsnelson
et al. [14], for group-II metals, a ratio of Fourier compo-
nent of pseudopotential to Fermi energy is rather small.
And therefore, it may be expected that the description
of thermodynamics of Ca can adequately be given with
the present coupling scheme (i.e. local pseudopotential +

MFP). Based on the second order pseudopotential theory,
EC can be written as

EC = Z (ek + ex + ec) + Ees + Ep + Ebs. (2)

First term of above equation, Z(ek + ex + ec), is known as
uniform electron gas energy. Here, ek, ex and ec represent
the kinetic, exchange and correlation energies of the homo-
geneous electron gas of charge Z (=2). The second term is
the electrostatic energy. Ep and Ebs are the first and sec-
ond order band structure energies, respectively. We have
used local pseudopotentials proposed by Fiolhais et al.,
which has the following form in q-space.
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+
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where parameters A and β are expressed in terms of α as,
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(
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2
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)
.

For Ca, individual parameters are α = 3.264 and
R = 0.540 a.u. (see Ref. [17]). Now, screened pseudopo-
tential can be calculated through the relation vion (q) =
ω b (q)/ε (q) , where ε (q) is the modified Lindhard func-
tion. vion(q) is related to Hartree dielectric function, and
exchange and correlation function [18], which accounts ex-
change and correlation interactions for the free electron
gas. This in turn is used to evaluate second order correc-
tion to the cold energy (Ebs) and hence 0 K total energy
EC . In present study, main objective is to obtain thermo-
dynamic properties of Ca at and above room temperature
(i.e. T > θD; the Debye temperature, for Ca θD = 230 K),
ionic motion can be treated classically. Under the mean-
field approximation, vibrational free energy of the lattice
ion can be written as,

Fion (Ω, T ) = −kBT

[(
3
2

)
ln

(
mkBT

2π�2

)

+ ln {vf (Ω, T )}], (4)

where

vf (Ω, T ) = 4π

∫
exp

[−g (r, Ω)
kBT

]
r2dr. (5)

Here, m is the mass of the ion and g(r, Ω) in equation (4)
is the mean-field potential (MFP). Following Wang and
Li [12], the MFP in terms of the EC (cold static energy)
is written as follows:

g (r, Ω) =
1
2

[EC (R0 + r) + EC (R0 − r) − 2EC (R0)]

+
(

λ

2

) (
r

R0

)
[EC (R0 + r) − EC (R0 − r)] , (6)



N.K. Bhatt et al.: Finite-temperature thermophysical properties of fcc-Ca 63

where r is the distance that the lattice ion deviates from
its equilibrium position, R0 is the lattice constant with
respect to Ω and λ is an integer. Three different values
for λ, i.e. −1, 0 and +1, corresponds to three expressions
for Grüneisen parameter given, respectively, by Slater [19],
Dugdale and MacDonald [20] and that for the free volume
theory [10] (see Ref. [12] for more details). The last term in
equation (1) is the Helmholtz free energy due to thermal
excitation of free electron gas, which can be written as,

Feg = Eeg − TSeg, (7)

where Eeg is the free electron kinetic, exchange and cor-
relation energies, which have already been included in EC

(see first term of Eq. (2)). The entropy contribution, Seg,
is given by [21],

Seg = Z

(
πkB

kF

)2

T. (8)

Having obtained total Helmholtz free energy, F (Ω, T), at
each temperature with zero-pressure condition, we have
obtained various thermodynamic properties by standard
thermodynamic equations (see, Ref. [13]), while shock
Hugoniot is obtained through Rankine-Hugoniot conser-
vation relation,

1
2
PH (Ω0 − ΩH) = (EH − E0) . (9)

Here, Ω0 and E0 refer to the atomic volume and energy at
ambient conditions, respectively. Solving equation (9), one
can easily derive the Hugoniot volume (ΩH) versus pres-
sure (PH) as a function of known Hugoniot energy (EH).

3 Results and discussion

Presently calculated 0 K binding energy (Ebin =
−1.48424 Ry), fcc lattice constant (R0 = 10.7243 a.u.),
isothermal bulk modulus (BT = 15.641 GPa) and its
pressure derivative (B

′
T = 4.023) are in close confirma-

tion to the experimental results −1.4567 Ry (Ref. [22]),
10.545 a.u. (Ref. [22]), 15.2 GPa (Ref. [23]) and 3.9
(Ref. [24]), respectively. These all together can determine
the 0 K energy curve, which in the present scheme, is
essential to evaluate Fion correctly. Shown in Figure 1,
are the cold energy (0 K) versus lattice constants curve
along with the Helmholtz free energies, at different tem-
peratures nearly up to structural phase transition tem-
perature, (for Ca it is T = 726 K), at which Ca transfers
to bcc-phase. In alkaline metals like simple alkali met-
als, band energy varies much fewer thus depends more on
volume than on crystal structure. Consequently, the sta-
bilization energies are expected to be small for this group
of metals, in contrast to those of transition metals. In this
regard, the present simple scheme has obvious limitation
to observe such a phase transition, and we have calculated
thermophysical properties up to 700 K for fcc-phase. It is

Fig. 1. The calculated total energy as a function of lattice
constant for fcc-Ca. From top to bottom graphs correspond to
temperatures, respectively, T = 0 K, 300 K, 500 K, and 700 K.
Experimental point at T = 0 K is due to Kittel [22].

Fig. 2. Temperature variation of vibrational free energy (con-
tinuous line) and electronic free energy (broken line). Solid
square corresponds to Debye temperature, for Ca θD = 230 K.

obvious that at temperatures higher than Debye temper-
ature ionic motion increases and leading to larger contri-
butions to the total free energy. This can be inferred from
Figure 2, where vibrational and electronic free energies are
plotted against temperature. Free energy due to thermally
excited electrons is found to be order of magnitude smaller
than the ionic one. Solid square in the graphs corresponds
to Debye temperature, above which lattice contributions
become significant and Fion increases rather rapidly.
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Fig. 3. Presently estimated volume-thermal expansion (con-
tinuous line) is compared with the experimental results: due to
Touloukian et al. [25] (solid circles, while dotted line is the view
to the eye) and Novikova [26] (solid triangles). Theoretical re-
sults due to Katsnelson et al. [14] is represented as broken line.

In harmonic theory inter-atomic potential energy is
considered to be purely parabolic and therefore cannot
predict thermal expansion. Asymmetry in the inter-atomic
potential energy (i.e. anharmonicity) leads mean equilib-
rium separation to increase with temperatures. Figure 3
depicts results for volume-thermal expansion versus tem-
perature along with the theoretical findings of Katsnelson
et al. [14], and experimental results due to Touloukian
et al. [25] (recommended values) and Novikova [26]. Kat-
snelson et al. [14] have separated electronic and lattice
contributions to thermal expansion and fitted to the ex-
perimental results. Thus, they could estimate the phonon
contribution to the thermal expansion as the difference
of the experimental data and the electron contribution.
This is shown in Figure 3. Also noted during the course
of calculation that the thermal expansion is very sensitive
to the choice of λ (see Eq. (6)), while equations of states
remain almost unaltered. We have tried all three possi-
bilities, and found that as λ moves from −1 → 0 → +1,
volume-thermal expansion decreases. In the present calcu-
lation λ = +1 accounts better thermal expansion. At low
temperatures (T � θD), considerable departure from the
experimental trend is seen, which is a typical feature of
any finite-temperature calculations. All high-temperature
calculations, till date, treat ionic motion classically and
therefore are unable to account for quantum effects at
low temperatures. Above Debye temperature, our results
are in close proximity to the empirical results due to
Touloukian et al. [25], and deviation at Debye temperature
is about 9%, which decreases further with temperature.
Since volume-thermal expansion is quite sensitive to the

Fig. 4. Calculated isotherms at T = 0 K (broken line) and
300 K (continuous line). Experimental results: due to Bundy
and Strong [27] (heavy dotted line at low pressures), solid dia-
monds are due to Anderson et al. [24]. Ab initio results (dotted
line at T = 0 K) are due to Jona and Marcus [28].

microscopic dynamical quantities such as phonon frequen-
cies, mode Grüneisen parameter and concavity parameter
(where later describes the deviation from the linear behav-
ior of the volume dependence of the phonon frequencies),
good results for volume-thermal expansion at high tem-
peratures reveal that the present scheme correctly takes
care of these physical quantities.

Equations of states (EOS) have great importance in
materials science. Static EOS at ambient temperature,
which is largely governed by cold or 0 K total energy, pro-
vides a link to monitor microscopic internal structure of
the material. Like-wise, dynamic or shock Hugoniot EOS
gives information on the behaviour of the material, simul-
taneously, at high-pressure and high-temperature. Static
EOS at 0 K and 300 K, and shock Hugoniot are shown
in Figures 4 and 5, respectively. Experimental results for
static EOS due to Bundy and Strong [27], those due to
Anderson et al. [24] and recent first principles results (at
T = 0 K) due to Jona and Marcus [28] are also shown
for comparison. Jona and Marcus have calculated equilib-
rium properties of heavy alkaline metals, namely Ca, Sr
and Ba, under hydrostatic pressures. Including zero-point
energy with a generalized Debye approximation, these au-
thors have estimated phase-transition pressures, elastic
constants and static EOS for different crystal structures.
It is clear from their results, for Ca, that pressures up
to 500 kbar EOS in both bcc- and fcc-phase are almost
identical. Thus, we have compared our results considering
only fcc-phase with their corresponding findings. At high-
est pressure, departure of 17% with the results of Jona
and Marcus has been found. Anderson et al. [24] have
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Fig. 5. Presently calculated shock-Hugoniot (continuous line),
while the numbers besides triangles represent the estimated
Hugoniot temperatures. Results due to Bakanova and du-
doladov [30] are shown as open circles.

predicted negative pressure at T = 0 K, and at equilibrium
volume. To include the effect of temperature, these au-
thors have constructed empirical EOS with the adjustable
parameters and deduce EOS (isotherm) at T = 295 K.
Presently calculated results are in good agreement with
these experimental data and maximum deviation of about
2.5% at 100 kbar is obtained. However, the structural
phase transition (SPT) at 63 kbar observed in the re-
sults of Bundy and Strong [27] cannot be reproduced by
the present scheme. This is in contradiction to more re-
cent results on high-pressure EOS (see Ref. [29]), which
predicts first SPT at 195 kbar (19.5 GPa), in which a
crystal undergoes a first-order transition from one crys-
tal structure (fcc – cF4) into another (bcc – cI2). Also
shown in Figure 5 is the shock Hugoniot and tempera-
ture along principal Hugoniot with the experimental re-
sults due to Bakanova and Dudoladov [30] (open circles).
Reasonable comparison is obtained with these data; nev-
ertheless results in Figure 5 strongly support the validity
of the Rankine-Hugoniot equation.

As a further test of the present approach to the zero-
pressure properties, our calculated isothermal and adia-
batic bulk moduli (BT and BS) versus temperature is
compared in Figure 6 with the theoretical results due to
MacDonald and MacDonald [31], Pandya [32], and exper-
imental value due to Kittel [22] at T = 0 K and those due
to Anderson et al. [24]. Difference of (almost constant)
15% is obtained with the empirical results of Anderson
et al., and as expected, due to thermal expansion, bulk
moduli decrease at higher temperatures. Ours as well as
the results due to MacDonald and MacDonald [31] clearly
justifies this fact, where their results overestimate the ex-

Fig. 6. Temperature variation of bulk moduli (continuous line
for BT and broken line is for BS). Theoretical results: due to
MacDonald and MacDonald [31] (long-dashed line for BT , dot-
ted line for BS), due to Pandya [32] for BT (Triangles with dot-
ted line). Experimental values for BT : due to Kittel [22] (soid
diamond) at T = 0 K and those due to Anderson et al. [24]
(solid circles).

perimental ones while ours underestimate the same for en-
tire range of temperature that studied. These authors have
calculated the Helmholtz free energy for a monatomic fcc
crystal model assuming nearest-neighbour central-force
(NNCF) interactions among atoms. They have included
static lattice energy, and vibrational contributions from
the harmonic and lowest-order, cubic and quartic, anhar-
monic terms in total Helmholtz free energy using pertur-
bation theory evaluated in the high-temperature limit.
They have employed modified Morse potential to repre-
sent pair potential, whose parameters were determined by
fitting to sublimation energy and Debye temperature. For
better quantitative agreement for the physical properties
considered, they have refitted these parameters to linear-
thermal expansion during the course of the calculation
in the neighbourhood of the Debye temperature. It is to
be noted, however, that no such fitting/refitting is made
in the present calculations, except following zero pressure
condition. Pandya [32] have considered Harrison’s gener-
alized orthogonalized plane wave (OPW) pseudopotential
method to extend it to study the d-band metals. He pro-
posed a relatively simple form of pseudopotential, which
takes s − d hybridization effects into account in a para-
metric way. The author has evaluated free energy within
harmonic approximation and thence different thermo-
physical properties (for instance, see Refs. [33,34]). Ex-
perimental trend (i.e. decrease in BT with temperature)
in his results is very weakly observed and also predicted
values for BT are too high compare to the experimental
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Fig. 7. Results for specific heats: CP (continuous line) and CV

(broken line) are compared with the theoretical results due to
Katsnelson et al. [15]: CP (long-dashed line) and CV (dotted
line); while results from reference [14], for CV (dotted line), is
also shown, lower graph. Experimental data due to Hultgren
et al. [35] for CP are shown as solid circles.

values. Their results clearly reveal inadequacy of harmonic
approximation above Debye temperature.

Shown in Figure 7 are the results for specific heats (CP

and CV ) at high temperatures with the other theoreti-
cal and experimental data. In the early paper, Katsnelson
et al. [14], employing Animalu-Heine (AH) local pseudopo-
tential within second-order perturbation approximation,
have calculated lattice dynamics and various thermody-
namic properties for Ca and Sr in both fcc- and bcc-phase
close to melting temperature. Their results for CV are
shown for comparison as a lower graph in Figure 6. In
this analysis, these authors have calculated heat capacity
CV through phonon density of states. They have separated
lattice contributions from the experimental heat capacity
and determined some momenta of phonon spectrum, while
electron heat capacity (Cel) and contributions from ther-
mally excited lattice defects, assuming very small, were
neglected completely. Recognizing a fact that these con-
tributions, though small, cannot be ignored at finite tem-
peratures, later, they [15] have incorporated Cel evaluated
from first principles method, namely FP-LMTO within
LDA, and contribution from lattice defects in an approx-
imate way. Incorporation of these anharmonic contribu-
tions has certainly improved their results qualitatively and
quantitatively, which are also shown in Figure 6. Our re-
sults for CV and CP are in good proximity to these the-
oretical results and also to the experimental data [35] for
CP . Upward experimental trend for CP cannot be ob-
served in both the theoretical results, requiring further mi-
croscopic investigations. It is true that high-temperature
martensite phase transition (MPT) (for Ca it is 726 K),
usually accompanied by essential increase in the AE in

Fig. 8. Presently obtained entropy (broken line, in
J mol−1 K−1) and relative enthalpy (continuous line, in
kJ mol−1) is plotted against temperature.

lattice dynamics, is in controversy concerns the question
whether MPTs are driven by soft phonons or by a different
mechanism. In contrast to diffusive phase transitions the
MPT is a collective phenomena; a signature of such tran-
sition cannot be reproduced by the present simple cou-
pling scheme. Nevertheless, present scheme gives results,
which are slightly better in agreement to the experimental
data for CP at higher temperatures (for instance, CP at
700 K is 4.8% below to the experimental result) than the
theoretical findings (∼7.8% at 700 K) due to Katsnelson
et al. [15].

Estimated temperature variation of relative or scaled
enthalpy (H) or zero-pressure internal energy (i.e.
HT − H0) and entropy S = (F − U)/T up to 700 K tem-
perature is shown in Figure 7. In absence of other results
we cannot compare our results with the other findings,
but as expected, entropy and enthalpy increase with tem-
perature for Ca.

Temperature dependence of thermodynamic
Grüneisen parameter (γth), an important thermody-
namic parameter often used to quantify the relationship
between the thermal and elastic properties of a solid,
is also obtained. According to Grüneisen, the volume
dependence of the phonon frequencies can be estimated
by the single parameter γth and thereby is the measure of
the anharmonicity. His assumption about characteristic
temperature for the phonon spectrum also means that
this characteristic temperature depends only on volume
and not on temperature at constant volume. Shown in
Figure 8 is the temperature dependency of γth close to
the melting temperature for fcc-Ca. Presently calculated
results are underestimated to the experimental results
(which we have quoted from the paper due to Katsnelson
et al. [14]) as well as to the theoretical findings of
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Fig. 9. Thermodynamic Grüneisen parameter as a function
of temperature (continuous line), along with the theoretical
findings of Katsnelson et al. [14] (broken line) and due to
MacDonald and MacDonald [30] (triangles with dotted line).
Experimental results (solid circles) are read from the respec-
tive graph from the paper due to Katsnelson et al. [14]. Solid
diamond on the Y -axis is the estimated value for the same at
T = 0 K, while dotted line is the view to the eye.

Katsnelson et al. [14] and those due to MacDonald and
MacDonald [30]. Nevertheless, our results are consistent
with the Grüneisen’s assumption and increases weakly
with temperature. Theoretical results due to Katsnel-
son et al. up to 700 K and those due to MacDonald
and MacDonald using nearest-neighbour central-force
(NNCF) model have the same temperature dependency.
At T = 0 K, following Vashchenko and Zubarev [10],
Grüneisen parameter can be written as,

γth =
B

′
T

2 − 5
6 + 2P

3BT

1 − 4P
3BT

corresponding to λ = +1 (see for example, Burakovsky
and Preston [36]). Here, B

′
T is the pressure derivative

of isothermal bulk modulus. This result is shown as a
solid diamond on the Y -axis, while the hypothetical dot-
ted line is the view to the eye. Having obtained volume-
thermal expansion, isothermal bulk modulus, thermody-
namic Grüneisen parameter, and specific heat at constant
volume, one can also calculate temperature variation of(

∂P
∂T

)
V

, a quantity often of interest experimentally, as

(
∂P

∂T

)
V

= βBT =
γth · Ω

CV
. (10)

4 Conclusion

Importance and incorporation of anharmonicity through
vibrational contribution and thermally excited electrons
to the total free energy, which is essential otherwise to
evaluate correctly thermophysical properties at high tem-
peratures, is illustrated taking an example of divalent fcc-
Ca. A simple conjunction scheme can yield results for ther-
mophysical properties, which are in good agreement with
the other ab initio theoretical and experimental data. Dis-
crepancies seen in CP at higher temperatures and ther-
modynamic Grüneisen parameter can be improved by in-
corporating contributions from lattice defects and vacan-
cies, and, perhaps, through s − d hybridization. Pollack
et al. [37] have shown that calculated phonon frequencies
with the same local pseudopotential are high in symmetric
directions (particularly, phonon frequencies in L-branch
along [100] and [111] directions are about 12% higher than
the experimental ones) for Ca. Thus, possible improve-
ment can be achieved, primarily for Grüneisen parame-
ter, if pseudopotential parameters have been determined
by fitting phonon frequencies as well. On the other hand,
high-pressure static and dynamic equations of states are
in reasonable agreement with the available experimental
data. This can be improved further, again, by including
s− d hybridization. However, it is to be emphasized that,
in the present calculations, once the potential parameters
were determined at 0 K, during the progress of calcula-
tions no fitting/refitting to any of the experimental values
in order to achieve quantitative results has been done and
different thermodynamic properties were obtained consis-
tently.

Thus, we conclude that (i) the pseudopotential due
to Fiolhais et al. [17], which is controlled by three dom-
inant parameters namely, the electron density, the va-
lence Z and the density on the surface of the Wigner-
Seitz cell, is found to be transferable to the other thermo-
dynamic states (i.e. high-temperature and high-pressure
states) without changing the values of the parameters and
(ii) the present scheme (i.e. MFP + local pseudopotential),
which bypasses lengthy and intricate computation, is pro-
ficient of producing results for thermodynamic properties
in reasonable agreement with the observed results.
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